OK语录网

一元二次不等式课件

发表时间:2025-12-18

一元二次不等式课件(必备19篇)。

▲ 一元二次不等式课件 ▼

一元一次不等式练习题

一元一次不等式练习题

一、填空

1、不等式组 的解集为

2、若m

3.若不等式组 无解,则 的取值范围是 .

4.已知方程组 有正数解,则k的取值范围是 .

5.若关于x的不等式组 的解集为 ,则m的取值范围是 .

6.不等式 的解集为 .

二、选择题:

7、若关于x的不等式组 有解,则m的范围是( )

A. B. C. D.

8、不等式组 的'解集是( )

9、如果关于x、y的方程组 的解是负数,则a的取值范围是( )

A.-45 C.a-4 D.无解

三、解答题

10、解下列不等式组,并在数轴上表示解集。

⑴ ⑵ [来

⑶ ⑷

11、已知方程组 的解为负数,求m的取值范围.

12、代数式 的值小于3且大于0,求x的取值范围.

13、求同时满足 和 的整数解

14、某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨.该校计划每月烧煤多少吨?

15、某班学生完成一项工作,原计划每人做4只,但由于其中10人另有任务未能参加这项工作,其余学生每人做6只,结果仍没能完成此工作,若以该班人数为未知数列方程,求此不等式解集。

▲ 一元二次不等式课件 ▼

从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

▲ 一元二次不等式课件 ▼

教学内容

3.2一元二次不等式及其解法

三维目标

一、知识与技能

1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;

2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;

3.会用列表法,进一步用数轴标根法求解分式及高次不等式;

4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.

二、过程与方法

1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;

2.发挥学生的主体作用,作好探究性教学;

3.理论联系实际,激发学生的学习积极性.

三、情感态度与价值观

1.进一步提高学生的运算能力和思维能力;

2.培养学生分析问题和解决问题的能力;

3.强化学生应用转化的数学思想和分类讨论的数学思想.

教学重点

1.从实际问题中抽象出一元二次不等式模型.

2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.

教学难点

1.深入理解二次函数、一元二次方程与一元二次不等式的关系.

教学方法

启发、探究式教学

教学过程

复习引入

师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。

生:略

师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

学生自己讨论

点题,板书课题

新课学习

1.一元二次不等式

只有一个未知数,并且未知数的最高次数是2的不等式。

2.三个“二次”之间的关系及一元二次不等式的解法

师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。

生略

师学生讨论归纳出解一元二次不等式的步骤

一看:看二次项系数的正负,并且变形为

二算:,判断正负,有根则求并画出对应的函数图象

三写:写出原不等式的解集

练习反馈

[例题剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

课本80页练习

例2已知不等式的解集为试解不等式

变式:

已知

课堂

小结

1.三个“二次的关系”

2.解二次不等式的步骤

作业布置

课本第80页习题3.2A组第1.2.4题B组1

练习调配

设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、

▲ 一元二次不等式课件 ▼

1、教学重点:对一元一次不等式组解集的认识及其解法。

2、教学难点:对一元一次不等式组解集的认识及确定。

3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。

4教学过程4.1第一学时教学活动活动1【导入】温故知新

教师提问:

1、什么是一元一次不等式?

2、什么是一元一次不等式的解集?

3、如何求一元一次不等式的解集?

针对性练习:

(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)

活动2【讲授】创设问题情景,探索新知

1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水

超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?

(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)

2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:

超过1 200 t和不足1 500 t。

3、问题1:如何用数学式子表示这两个不等关系?

1)引导学生一起把这个实际问题转换为数学模型:

满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。

设用x min将污水抽完,则x需同时满足以下两个不等式:

30x>1200, ①

30x<1500 ②

2)教师归纳一元一次不等式组的意义:

由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。

(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)

4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?

1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,

运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。

2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:

由不等式①,解得x>40

由不等式②,解得x<50

3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。

(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)

5、问题3:如何求得这两个解集的公共部分?

学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。

(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)

教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。

(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)

形式一:用两种不同颜色表示这两个解集

1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。

(1)这两种颜色把数轴分成几个部分?

(2)每一个部分分别表示哪些数?

(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?

2)学生通过自主探究、合作交流,得到这3个问题的正确答案。

3)得出结论:

只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。

4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。

(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)

形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。

类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。

形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。

(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)

6、问题4:如何表示这个可取值范围?

教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。

7、小结并解决课本问题:原不等式组中x的取值范围为40

(设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)

8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:

在数轴上,若在40

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)把这些解集分别在同一条数轴上表示出来;

(3)确定各个不等式解集的公共部分;

(4)写出不等式组的解集。

(设计意图:及时进行小结,使学生对所学知识更加的系统化。)

▲ 一元二次不等式课件 ▼

基本不等式是初中数学中的一个重要内容,也被称为柯西-施瓦茨不等式。它的意义不仅限于初中数学,在高中数学、大学数学等领域都有广泛的应用。基本不等式是数学中非常基础的概念,我们可以通过以下的主题范文来深入了解。

主题一:基本不等式的概念及其应用

基本不等式是初中数学中的基础概念,它是数学不等式中的重要内容。它起源于柯西-施瓦茨不等式,可以用于证明不等式以及优化问题。基本不等式的本质是数学中的向量内积,具有非常广泛的应用,比如在概率论、统计学、矩阵论、函数论、微积分等方面都有应用。

主题二:基本不等式的证明方法

基本不等式的证明方法主要有两种。一种是基于二次函数的方法,另一种是基于向量内积的方法。无论采用哪种方法,都需要通过简单的代数变化、平方等方法,将式子变形成为已知的不等式形式。利用这种方法,我们就可以推出基本不等式,从而应用到不等式证明等问题中。

主题三:基本不等式在函数极值问题中的应用

基本不等式在函数极值问题中也有广泛的应用。函数的极值可以通过求导数和函数值来求解,而基本不等式可以在求解函数极值过程中起到优化作用。通过基本不等式,可以很好地规避一些数学中的陷阱,从而获得更精确的结果。因此,基本不等式在函数极值问题中的应用是非常重要的。

主题四:基本不等式在概率论和统计学中的应用

基本不等式在概率论和统计学中也有广泛的应用。概率论中的卡方分布、t分布等都是基于基本不等式的优化结果。在统计学的研究中,基本不等式可以用于特征值的计算、回归分析等方面。因此,基本不等式在概率论和统计学中的应用也是非常重要的。

主题五:用基本不等式解决数学中的“热点”问题

基本不等式是数学中的热点问题之一,因为它在解决很多复杂的数学问题中都起到了重要作用。比如,在组合数学中,基本不等式用于计算多重组合数。在三角函数中,基本不等式用于计算三角函数的幂的和。在数值分析中,基本不等式用于优化函数逼近等方面。因此,我们可以用基本不等式解决数学中的一些“热点”问题,从而获得更深入的数学技巧。

总的来说,基本不等式是数学中一个非常重要的内容,它可以用于解决不等式证明、函数极值、概率论和统计学等领域的问题。同时,基本不等式也是数学中的“热点”问题之一,它为我们提供了更深入的数学技巧和思维方式。掌握基本不等式不仅可以提高数学水平,而且可以在其他领域带来更多的收获。

▲ 一元二次不等式课件 ▼

(一)教材分析

本节课的内容,是人教版七年级下册第九章第二节“实际问题与一元一次不等式”。它是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题。这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径。通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题。经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法。不等式与现实生活中联系非常紧密,解决好这类应用题,有助于学生在以后的日常生活中自主灵活应用所学知识解决实际问题。

(二)学情分析

七2班班现有56名同学,部分学生基础较差,拔尖学生少,尤其个别学生底子太薄,学生学习较为被动,预习工作做得不够认真,同时学生学习数学的积极性不高,基本能力较差,解决问题的能力不强,知识掌握不够扎实,运用不够灵活。从学生学习的心理基础和认知特点来说:学生已经在前一阶段学习的学习中已经具备了实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用。虽然初一学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本节问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍。

(三)设计的目的及意义

一元一次不等式的应用,是中学数学的重要内容,和一元一次方程应用相似,对培养学生分析问题、解决问题的能力,体会数学的价值都有较大的意义.对实际生活中的不等量关系、数量大小比较等知识,学生在小学阶段已经有所了解.但用不等式表示,并对不等式的相关性质进行探究,对学生是新的内容。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。分组活动,先独立思考,再组内交流,然后各组汇报讨论结果,可极大调动学生的创造积极性,应把握学生的创新潜能,使不同层次的学生都能得到发展。在实施教学时,要根据课程改革的基本理念和教材特点组织教学.结合具体内容,让学生经历知识的形成与应用过程。

(四)实施过程

【教学目标】

知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。

能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

【重点难点】

重点:一元一次不等式在实际问题中的应用。

难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。

【教学过程】

创设情境,研究新知

老师知道,咱们班的学生特别聪明、特别棒,不等式这一章学习的特别好,下面让我来检测一下,看看那些同学学习的好?

(出示一个解不等式的问题,为后面新知作铺垫)

▲ 一元二次不等式课件 ▼

本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。

在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。

在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。

让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

▲ 一元二次不等式课件 ▼

我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以2004年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

▲ 一元二次不等式课件 ▼

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

▲ 一元二次不等式课件 ▼

⑴知识掌握上,学生原有的知识一元一次不等式、一元一次方程、一次函数,许多学生出现知识遗忘,所以应全面系统对学生的自由讨论加以指导,引导学生如何研究一次不等式、一元一次方程、一次函数的内在联系,共同揭示“等与不等”这对矛盾的双方,在一定的条件下是可以转化,从而使学生更深刻地理解等与不等的辨证关系。

(2)学习本节课的知识障碍是一次不等式、一元一次方程、一次函数的内在联系

学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

▲ 一元二次不等式课件 ▼

回顾本节课,我有以下感受:

先从实际生活中遇到的.问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然;

我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备;

比如在知识梳理环节安楠同学区分了解一元一次不等式组和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定;

如果我再上一次这个内容我会把探究活动直接作为学生课后探究的问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用;

若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。

▲ 一元二次不等式课件 ▼

基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。

一、基本不等式的定义与性质
基本不等式是说:对于正实数x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。

基本不等式的性质有以下几条:
(1)当n为偶数时,等号成立;
(2)当n为奇数时,当且仅当所有数相等时等号成立;
(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;
(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。

二、基本不等式的应用
基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。

1. 求和式的最小值
例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?

解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。

2. 比较函数大小
例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。

解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即
f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]
≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)
=√(a²+b²+c²+ab-ac-bc)+c
当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。

3. 求极限
例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。

解法:根据基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知条件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
极限为1/2。

4. 求证不等式
例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。

解法:将不等式化简,得:
∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a²+b²+c²,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)
其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。

综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。

▲ 一元二次不等式课件 ▼

一元一次不等式组(第1课时)

西吉三中 刘征兵

教学设计思想

准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。本节教学的重点是一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。在学习的过程中有问题引入新课,引导学生充分讨论,得出所要的不等式组,进而研究不等式组的解法及其用数轴的表示,通过练习来巩固如何解不等式组。最后学习的是不等式组在现实生活中的简单应用。

教学目标

1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;

2.使学生逐步学会用数形结合的观点去分析问题、解决问题. 知识目标

经历通过具体问题抽象出不等式组的过程;

表述一元一次不等式组及其解集的意义,初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。

能力目标

体会运用不等式组解决简单实际问题的过程,提高学习热情和积极性,进一步发展符号感与数学化的能力。

情感目标

通过用数轴表示不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美,体会数形结合的思想。

重点:一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。难点:求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。解决办法:不等式组的解集通过数轴来表示简单明了,关于不等式组的应用要仔细审题以小组讨论的形式引导学生找出题中的不等关系,进而列出不等式组。

教学方法

引导发现法、小组讨论交流。

分即不等式组中未知数的可取值范围。

由不等式①解得x<13。由不等式②解得x>7。

从图—2容易看出,x可以取值的范围为7

注:利用数轴可以直观形象地认识公共部分。这个公共部分是两端有界的开区间。这就是说,当木条c比7 cm长并且比13 cm短时,它能与木条a和b一起钉成三角形木框。

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

注:这里正式给出不等式组的解集以及解不等式组的定义。例1 解下列不等式组:

解:(1)解不等式①,得x>2。解不等式②,得x>3。

把不等式①和②的解集在数轴上表示出来(图—3)。

注:这个不等式组的解集是左端有界的开区间。

从图9。3—3可以找出两个不等式解集的公共部分,得不等式组的解集x>3。(2)解不等式①,得x≥8。

x?45解不等式②,得

这两个不等式的解集没有公共部分(图—4),不等式组无解。

▲ 一元二次不等式课件 ▼

一元一次不等式的应用教案

一元一次不等式的应用教案 孙云云 一、前置作业 请自学课本12、13页,相信你会有很大的收获!带着的你的例子借助一元一次不等式来解决实际问题。 二、教学过程 一)导入 在现实中的许多问题,可以借助于一元一次不等式来解决。本节课我们来研究用元一次不等式解决实际 问题。 二、检查前置作业,交流组内存在问题 怎样借助一元一次不等式解决实际问题 三、班级汇报展示 带着你的`例子借助一元一次不等式来解决实际问题。 四、总结提升 你学会了什么? 五、布置作业 教学反思:开始课堂沉闷,学生有些紧张,后来在教师的调解下,气氛活跃了。樊广文出的题中缺少一个条件,马悦出的三道题所提出的问题都有不正确,尽管学生在编的实际问题中出现了失误,但学生真的动起来了,在思想的相互碰撞中,每个问题都得到了解决。但也有不足,如小组的时效性较小,虽然经历了小组交流,但问题并未深入的解决,马悦的三道题是代表小组的,但小组只停留在马悦出题了,也没有交流她出题的正确性。导致三道题都出现同一个问题。在今后的教学中教师更应该关注小组的时效性。

▲ 一元二次不等式课件 ▼

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

▲ 一元二次不等式课件 ▼

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

▲ 一元二次不等式课件 ▼

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:

填表:

当x 时,y = 0,即 2x-7 0;

当x 时,y < 0,即 2x-7 0;

当x 时,y > 0,即 2x-7 0;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y<0,y>0部分图象)

从上例的特殊情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

▲ 一元二次不等式课件 ▼

基本不等式是初中数学比较重要的一个概念,对于求解不等式问题有非常大的作用。在教学中,老师可以通过多学示例,呈现形式多样,让学生深刻理解基本不等式的本质和应用,使学生在解决实际问题中灵活掌握相关知识。本文将结合基本不等式的定义、性质和应用,探讨其相关主题。

一、基本不等式的定义和性质

基本不等式是在解决实际问题时常用到的一种数学方法,它可以有效地帮助我们解决很多实际问题。在数学中,一般把基本不等式定义为,对于任何正整数a和b,有下列不等关系:

(a+b)^2>=4ab

这个不等式在初中数学中非常重要,我们还可以把它解释成下面的形式:对于任何两个正数a和b,有下列不等式:

a/b+b/a>=2

这个式子实际上就是基本不等式的一个特例,也说明了基本不等式中的a和b可以指任何两个正数。

基本不等式的一些性质:

1、两边同时乘以正数或是开根号(即不改变不等关系的实质)是允许的。

2、当a=b时等号成立。

3、当a不等于b时,不等号成立。

这些性质是我们用基本不等式时需要注意的几个关键点。如果我们了解了这些基本的性质,就可以更加灵活地运用基本不等式解决实际问题。

二、基本不等式的应用

基本不等式的应用非常广泛,例如可以用它来解决以下问题:

1、证明

√(a^2+b^2)>=a/√2+b/√2

这个问题就可以使用基本不等式来证明,首先得到(a+b)^2>=2(a^2+b^2),将式子化简可得√(a^2+b^2)>=a/√2+b/√2,这就是想要证明的结论。

2、解决一些最值问题。例如:如何使a+b的值最小?这个问题可以用基本不等式来解决,我们设a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:

k^2>=4ab,即(a+b)^2>=4ab

这个不等式右边是4ab,左边则是(a+b)^2,因此a+b的值取得最小值时,应当使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。

3、证明一些平方和不等式的结论。例如:

(a/b)^2+(b/a)^2>=2

这个问题可以通过基本不等式进行证明,首先我们设x=a/b,y=b/a,很显然有x+y>=2,然后通过简单的运算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。

综上所述,基本不等式作为初中数学比较重要的一部分,其定义、性质和应用都与实际问题密切相关。在解决实际问题时,我们可以通过多学示例,灵活运用基本不等式的性质和应用,进而更好地理解其本质和应用,从而使初中数学知识更加牢固。

▲ 一元二次不等式课件 ▼

一、素质教育目标

(一)知识教学点

1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组。

2.掌握一元一次不等式组解集的几种情况。

(二)能力训练点

通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力。

(三)德育渗透点

通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点。

(四)美育渗透点

用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美。

二、学法引导

1.教学方法:引导发现法、观察法、归纳总结法。

2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集。

三、重点·难点·疑点及解决办法

(一)重点

理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况。

(二)难点

正确理解一元一次不等式组解集的含义。

(三)疑点

弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解。

(四)解决办法

加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法。

四、课时安排

一课时.

五、教具学具准备

直尺、铅笔、投影仪或电脑、自制胶片。

六、师生互动活动设计

1.教师设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法。

2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们。

3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律。

七、教学步骤

(一)明确目标

本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用。

(二)整体感知

要正确表示出不等式组的解集的关键在于学会用数轴表示。若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律。

(三)教学过程

1.创设情境,复习引入

(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?

(2)已知一个数比2大但比4小,请在数轴上表示数。

学生活动:口答(1)题.板演(2)题,如下图所示:

教师分析:一个数比2大但比4小,说明取值使不等式与都成立,把一元一次不等式与合在一起,就组成了一个一元一次不等式组,记作在数轴上表示不等式①②的解集

可以看出,使不等式,都成立的值,是所有大于2并且小于4的数(记作),它们是不等式①、②的解集的公共部分,在数轴上表示成:

不等式①、②的解集的公共部分,叫做由不等式①、②组成的一元一次不等式组的解集。

【教法说明】通过学生板演,教师分析,使学生形成对不等式组解集的初步认识,激发了他们应用旧知识探索新知识的热情。

2.探索新知,讲授新课

(1)不等式组的解集:一般地,几个一元一次不等式的解集的公共部分叫做由它们组成的不等式组的解集。

说明:求不等式组解集的关键是找不等式解集的“公共部分”。若有公共部分,公共部分即为解集;若无公共部分,则不等式组无解。

(2)解不等式组:求不等式组解集的过程叫解不等式组。

请同学们根据自己的理解,解答下列各题。

例1利用数轴判断下列不等式组有无解集?若有解集,请求出。

① ② ③ ④(wWW.Zr120.COm 节日祝福网)

学生活动:学生在练习本上完成,同时指定四个学生板演.板演完成后,由学生判断是否正确。

解:① ②

不等式组解集为不等式组解集为

③ ④

不等式组解集为不等式组无解

【教法说明】教学时,可用彩笔在数轴上描出折线的公共部分,这样可以使学生直观、形象地理解不等式组解集的含义,并掌握解集的表示方法。

3.尝试反馈,巩固知识

利用数轴判断下列不等式组有无解集?如有,请表示出来。

教学活动:独立完成,同桌互阅,投影出示正确答案。

教师活动:抽查部分学生,纠正错误。

一元一次不等式组中,不等式个数多于两个,解集求法有无变化呢?同学们通过解答下列各题,仔细体会。

利用数轴解下列不等式组:

学生活动:分析讨论,尝试得出答案;指名回答,与投影出示的正确解题过程对比.

答案:(1)(2)(3)(4)无解

4.变式训练,培养能力

单项选择:

(1)不等式组的整数解是()

A.0,1 B.0 C.1 D.

(2)不等式组的负整数解是()

A.-2,0,-1 B.-2 C.-2,-1 D.不能确定

(3)不等式组的解集在数轴上表示正确的是()

(4)不等式组的解集在数轴上表示正确的为()

(5)根据图中所示可知不等式组的解集为()

A.B.C.D.

学生活动:前后桌结组讨论完成,各组以抢答方式说出答案.

参考答案:C,C,D,A,C

【教法说明】设置上述题组旨在训练学生的思维能力;以抢答形式完成则是为了激发学生探索知识的热情.

(四)总结、扩展

不等式组

1.图示

2.折线特点

3.解集

4.解集与公共部分关系

折线的公共部分

即为不等式组的解集

无解若,不等式组的解集是什么?有规律可寻吗?

【教法说明】学生通过实践尝试得到规律,以此揭示规律存在的一般性、必然性,既训练了学生的归纳总结能力,也充分发挥了主体作用.

注意问题:教学时,每组不等式不要超过三个,关键是使学生理解和掌握解不等式的方法,不宜过于难、过于多,避免重复的机械计算.

八、布置作业

(一)必做题:P78 1;P79 A组1.

(二)选择题:

填空题:

1.不等式组的非负整数解是_______________.

2.若同时满足与,则的取值范围是______________.

3.一元一次不等式组()的解集为,则与的大小关系为____________.

【教法说明】补充题旨在训练学生的思维能力、应变能力和解题灵活性.

参考答案

略.

九、板书设计

本文网址:https://www.968ok.com/fanwen/361456.html