OK语录网

1-6年级数学教案

发表时间:2025-03-04

1-6年级数学教案(汇编十三篇)。

作为一名默默奉献的教育工作者,就有可能用到教案,借助教案可以让教学工作更科学化。那要怎么写好教案呢?以下是小编精心整理的小学六年级数学教案,希望对大家有所帮助。

1-6年级数学教案 篇1

本课题教时数:本教时为第2教时备课日期9月9日

教学目标

1、使学生理解整数除法分数的计算方法,并能正确地进行计算。

2、培养学生分析、推理和概括等思维能力。

教学重难点

整数除以分数的计算方法。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习旧知

二、教学新课

一、 巩固练习

四、小结。

五、作业

1、口算

3/431/542/766/112

分数除以整数通常是怎样计算的?

2、复习第(1)题

学生口答算式与结果。

这一题已知什么数量,要求什么数量?按怎样的数量关系求?

出示数量关系式:速度=路程时间

3、口答填空

3/10小时是()个1/10小时。

1小时是()个1/10小时。

4、引入新课

1、教学例2

这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?

(183/10)

画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?

根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。

师边述说边画线段。

问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?

要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?

根据回答把线段图补充完整。

讨论:按这样来想,你认为第一步求什么?怎样求?

(1)1/10小时行的千米数是:183

为什么要用183?183能不能转化成用乘法来计算?

讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?968Ok.COm

(2)1小时行的千米数是:181/310

(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?

问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?

从上面的推想过程看出,183/10转化成什么样的计算了?

比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?

2、小结。

1、练一练1

2、练一练2整数除以分数是怎样计算的?

3、练习八2整数除以分数和整数乘分数在计算时有什么不同?

4、练习八3

分组练习

做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?

说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。

练习八、1、4、5

181/310

=18(1/310)

=1810/3

课后感受

此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。

1-6年级数学教案 篇2

教学目标:

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关第,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。

3、通过主动发现的小组合作学习,激发学合作意识,培养比较、分析、抽象、概括和自主学习的能力。

4、养成认真观察,积极思考的良好学习习惯。

教学重点:

理解和运用比的意义及比与除法、分数的联系。

教学难点:

理解比的意义。

教学准备:

课件、实物投影、表格、四幅比例不同的画。

教学过程:

一、创设情境,激发兴趣

出示四幅画,(A、头身一样长 B、头:身=2:3 C、头:身=1:5 D、头:身=1:6)选出你认为最美的人物速写。

师:早在一千多年前,德国心理学家费希纳也做过这样一个类似的实验,而评选的结果与我们刚刚的评选竟惊人地不谋而合。那这些人物画为什么会被大家公认为是最美的,其中的奥秘到底又在哪里呢?就让我们带着这些问题,开始今天的学习。

师:根据经验,你觉得一幅人物速写美不美,主要跟它的什么有关?

师:确实,人物画的美与所画的头与身之间的关系有密切的联系。想想怎样比较它们之间的关系?

二、探索规律,揭示意义

(一)出示:

1、一个镜框长5分米,宽3分米。长是宽的几倍?

还可以怎样表示长与宽的关系?

像这种表示长与宽的关系有时也说成长与宽的比是5比3,

宽与长的比是3比5。这两个长度的比属于同类的量相比。

2、一辆汽车2小时行驶90千米。

已知什么?可以求什么?

路程与时间两个不同类的量,表示它们的关系时可以用速度来表示,也可以说成:汽车所行路程与时间的比是90比2。

三、自主学习,合作交流。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的46~47页还涉及到一些关于比的其他知识,你们想自己研究、探索吗?那么就请你们先独立自学,自学完了在四人小组里你学会了什么?还有什么疑问?开始吧!

(2)汇报。(允许学生无序汇报,注意让学生举例说明,并即时练习)

①写法。

我学会了比的写法,5比3记作5∶3。(让学生板演)

问:这个∶叫做什么呢?谁愿意给它起个名字?(强调:写∶应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12.51又记作什么?(指名板演,其他同学写在练习本上)3∶4 4∶3 110∶12.91又怎样读呢?

思考:刚才大家学会了用∶的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

②各部分名称。(结合板书)

③比值。

我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

问:那么怎样求比值呢?(前项除以后项的商)

练习:求出下面各比的比值。3∶4 0.7∶0.35 8∶4

0.2∶

让学生观察求比值的过程,想想比与除法有什么联系?

(四)探讨比与分数、除法的关系、区别

根据分数与除法的联系想想比与分数有什么联系?

小组合作,让学生拿出所发表格进行填写。

展示学生整理的内容:

联 系 区 别

比 前项 比号(:) 后项 比值 两数之间的关系

除法 被除数 除号() 除数 商 一个算式

分数 分子 分数线() 分母 分数值 两数之间的关系或具体的量

用字母a和b分别表示两数,想想比、除法、分数的关系可以怎样表示呢? (a:b=ab=(b0))

比也可以写成分数形式:如3:5也可写成。

【1】第一层练习

1、填空:

(1)小华家养了12只鸡,9只鸭。

鸡和鸭只数的比是 ( ),比值是( )。

鸭和鸡只数的比是 ( ),比值是( )

(2)买3千克苹果用了7.5元。买苹果的总价和数量的比是( ),比值是( )。

2、把下面的比改写成分数形式、

25∶100 21∶18

这里注意:改写成分数形式后读法还是和比的读法一样,读做谁比谁。

并且不能约分,因为约分后的结果是比值,不是比。这里要区分

3、选择

买4支钢笔是12元,钢笔总价和数量的比是( )

A、4∶12 B、12∶4 C、12/4

为什么B和C的答案都对呢?(因为比还可以写成分数的形式,但是读还是读做几比几。)

4、判断:

(1)小明今年10岁,爸爸37岁,父亲和儿子的年龄比是10∶37。

(2)一项工程,甲单独做要7天完成,乙单独做要5天完成,甲乙两人的工作效率比是7∶5。

(3)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。

【2】第二层练习

1、写出比值是2的比。

【3】随机练习(看时间情况定)

陈俊明今年12岁,是六年(4)班学生,该班共有48个学生,小明爸爸今年38岁,在科技公司上班,每月工资5000元,年薪60000元,小明妈妈每月工资800元,年薪9600元,她所在单位有职工24人。

要求:根据题目中提供的条件,寻找合适的量,说出两个数之间的比。

五、课堂总结,拓展延伸。

1、这节课学习了什么知识?你有什么收获?

2、你能说出一些生活中的关于比的例子吗?(学生举例)

师:同学们,其实,比在我们的日常工作和生活中,有着广泛的应用。

(1)松下高清晰数字彩电有4:3的宽屏幕,与未来标准接轨,超 值影院享受。

(2)雀巢咖啡是由白砂糖和速溶咖啡按2:5混合而成的,香气浓郁,味道好极了!

(3)在雅典奥运会上,共32次冉冉升起的五星红旗,它的宽和长的比是著名的黄金比 1:1.618.。

(4)人的脚长与身高的比大约是:1︰7;拳头翻滚一周,它的长度与脚的比大约是:1︰1知道这些有趣的比很有用,如果你到商店买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。

课后,希望同学们能继续调查比在生活中的应用,并且把你的发现写成一篇数学日记。

1-6年级数学教案 篇3

教学内容:

义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。

教材简析:

教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

教学目标:

1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。

3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。

教学过程:

一、创设情境,谈话导入。

谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

二、自主探究,获取新知。

1.课件出示教科书73页情境

谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

(1)北京故宫的.占地面积大约是多少公顷?

(2)我国的世界文化遗产和自然遗产一共有多少处?

(3)我国的世界文化遗产比自然遗产多多少处?………

(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?

2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。

3.选择你喜欢的方法试着独立解决这一问题好吗?

4.学生汇报交流。

让学生到前面展示不同的方法,分别说说自己的解题思路。

(1)272×1/4=68(公顷) 68+4=72(公顷)

(2)272×1/4+4=68+4=72(公顷)

学生在多次交流解题步骤中,教师板书数量关系

天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积

并展示学生画的线段图。让学生分析线段图。

[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?

学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)

全班交流,展示做题方法。

(1)30×7/10+30×2/15 (2)30×(7/10+2/15)

=21+4 =30×25/30

=25(处) =25(处)

6.让学生展示线段图的画法,说清解题思路。

7.点题并板书:分数应用题。

8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

9.小结:乘法的分配律在分数中同样适用。

[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

三、巩固练习,加深理解。

独立完成(第75页第2、3题。)

指生回答,并说出解题思路。

(重点说出数量关系。)

[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。

四、回归实践,拓展运用。

课件再次出示本课信息窗情境图。

谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?

现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。

课本76页第9题。学生读题,指生列式。

[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。

五、谈收获。

这节课你有什么收获?

1-6年级数学教案 篇4

【练习内容】

北师大版六年级上册第62页。自主学习天地P55的练习题。

【练习目标】

1、通过练习,进一步认识复式折线统计图。了解折线统计图的特点。

从统计图中获取尽可能多的信息,体会数据的作用。

3、进一步学习制作复试折线统计图,培养学生动手操作能力,分析能力和合作能力。

【练习重点】

进一步练习复式折线图的意义与统计图。

【练习难点】

如何根据所提供数据的实际情况(有时并非每月、每年都有数据)来确定水平射线上每天竖线之间的间隔。

【教学设计】

教学过程说明

一.课本练习

谈话导入

师:P62中两个城市平均气温统计表,根据表里的数据,你了解了什么?。

生:

师:同学们很注意观察事物。这说明要从表里了解和收集数学信息。

回顾旧知

复式折线统计图有什么特点?你能说一说一吗?

小结学习

同学们,现在到小组里将自己的想法说一说,形成共识。重要的一点是,为什么要选择这种统计方式。

4、集体订正

二.自主学习天地

P55第1、2题

下面的统计图是一个什么统计图?你从图中了解到了什么数学信息?

学生回答,集体订正完成。

2、智慧树第1题。

实线表示的是什么?虚线呢?

3、实践大本营

自主完成,思考一下,有什么需要一集体解决的。

集体订正。

三、拓展

生活中有什么需要用到复式折线统计图的?

自由叙述。

四、小结:

1、完成自主学习天地P55-56。

2、小结:

与同学们一起说一说,你今天的收获和你的疑惑。

重点让学生就解题中的问题进行探讨!

数学来源于生活,让学生注意观察身边的数学知识

通过自主交流与探索,比较,进一步明确复式折线统计图的特点,并会作小结总结自己的收获与还需要进一步加强的方面。

1-6年级数学教案 篇5

教学内容:

教科书第50、51页的内容,做一做,练习十一第4-6题。

教学目标:

1、掌握比的基本性质,能根据比的基本性质化简比。

2、联系商不变的性质和分数的基本性质迁移到比的基本性质。

教学重点:

理解比的基本性质。

教学难点:

能应用比的基本性质化简比。

教学过程:

一、激趣定标

1、20÷5=(20×10)÷( × )=( )

2、

想一想:什么叫商不变的规律?什么叫分数的基本性质?

3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。

二、自学互动,适时点拨

【活动一】比的基本性质

学习方式:小组合作、汇报交流

学习任务

1、启发诱导,发现问题:6:8和12:16这两个比不同,可是它们的比值却相同,这里面有什么规律呢?。

6:8=6÷8=6/8=3/4 12:16=12÷16=12/16=3/4

2、观察比较,发现规律。

(1)利用比和除法的`关系来研究比中的规律。(商不变的规律)

(2)利用比和分数的关系来研究比中的规律。

3、归纳总结,概括规律。

(1)总结:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

(2)追问:这里“相同的数”为什么要强调0除外呢?

【活动二】化简比

学习方式:尝试训练、汇报交流

学习任务

1、认识最简单的整数比。

(1)提问:谁知道什么样的比可以称作是最简单的整数比?

(2)归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。

(3)指出几个最简单的整数比。

2、运用性质,掌握化简比的方法。

(1)分别写出这两面联合国国旗长和宽的比。

(2)思考:这两个比是最简单的整数比吗?为什么?(前项和后项除了公因数1还有其他的公因数。)

(3)尝试化简。

(4)汇报交流:只要把比的前、后项除以它们的公因数。

(5)想一想:这两个比化简后结果相同,说明了什么?(这两面旗的大小不同,形状相同。

(6)出示例题,组织交流

①乘分母的最小公倍数:1/6:2/9=(1/6×18):(2/9×18)=3:4

②前后项先化成整数,再化简:0.75:2=(0.75×100):(2×100)=75:200=3:8

③用分数除法的方法计算:1/6÷2/9=1/6×2/9=3/4

(7)小结:如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。

三、达标测评

1.完成课本第51页的“做一做”,集体订正。

2、完成课本第52页练习十一的第2、4、5、6题。

四、课堂小结

这节课我们学习了什么?你有什么收获?

1-6年级数学教案 篇6

教学内容:第7册教科书第91页例4,92页的练一练及相关练习。

素质教育目标

(一)知识教学点

1.使学生进一步认识相遇问题应用题的结构.

2.通过分析相遇问题的数量关系,较熟练掌握相遇问题的思考方法.

3.学会解答已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.

(二)能力训练点

1.如何根据两地之间的路程和两个物体运行的速度,求相遇时间.

2.提高学生解答实际问题的能力.

(三)德育渗透点

1.培养学生积极动脑,独立思考的良好习惯.

2.通过应用题的教学培养学生热爱数学的品质.

教学重点:进一步认识相遇问题应用题的结构,能根据相遇问题的数量关系学会已知两地之间的'路程和两个物体运行的速度,求相遇时间的应用题.

教学难点:如何根据相遇关系式解答相遇求时间的各类应用题.

教具学具准备:自制活动投影片一套,小黑板两块.

教学步骤

一、铺垫孕伏

1.投影出示:小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经3分钟两人相遇.两地相距多远?

(1)读题

(2)用两种方法解答

2.导入:

(1)引导学生把这题所求问题变为条件,改编成求相遇时间的应用题.

(2)出示改编后的例6,两地相距270米.小东和小英同时从两地出发,相对走来.小东每分钟走50米,小英每分钟走40米.经过几分钟两人相遇?这就是我们这节课要学的求相遇时间的应用题.(板书相遇求时间)

二、探究新知

1.教学例6,读题理解题以后解答

(1)这题告诉我们哪些条件?(相距路程,两人速度)

(2)要求的问题是什么?(相遇时间)

2.演示自制投影片.

第一次演示:你发现了什么?启发学生思考:

(1)小东走了多少米?(50米),小英走了多少米?(40米)

(2)两人共走了多少米?(50+40=90米)

(3)用了多少时间?(1分)为什么只用了1分钟?(因为他俩是同时出发)

(4)这时两人相距多少米?(270-90=180米)

第二次演示:请认真观察,根据第一次演示的思考方法讨论,你知道了什么?

引导学生知道:

(1)现在小东走了100米,小英走了80米.

(2)他们都用了2分钟,老师追问:为什么两人用的时间相同?

(3)现在两人共走了180米.(100+80=180米)

(4)两人还相距90米.(270-180=90米)

3.归纳

提问:通过以上两次演示还知道了什么?

引导学生知道:

(1)小东和小英走的时间是相同的.

(2)小东和小英走1分钟就是90米,走2分钟就是180米.

(3)如果小东和小英再走1分钟就走完全程相遇了.

提问:是不是呢?老师指名学生到前面演示.从中你发现了什么?

(4)小东和小英走完全程(相遇)用了3分钟.提问:

(1)这3分钟就是什么?(相遇时间)

(2)讨论:是怎样得来的?

引导学生知道:

(1)小东和小英同时出发1分钟就走90米,270米里有3个90米,所以两人同时走完270米就用了3分钟,也就是这题求的相遇时间.

(2)归纳数量关系,引导学生知道:

①270米是路程

②90米是速度

③3分钟是时间

④数量关系式是:路程速度=时间

4.列综合算式独立解答

三、巩固发展

1.甲乙两个车站相距270米,两辆汽车从两站同时相对开出,甲车每小时行50千米,乙车每小时行40千米,开出几小时两车相遇?改变条件出示:

提问:(1)根据今天学的数量关系解这题的关键是什么?

(2)说解题思路

①如果乙车每小时比甲车慢10米,几小时后两车相遇?

②如果乙车每小时行40千米,比甲车每小时少行10千米,几小时后两车相遇?

思考后先独立完成,然后汇报解题思路.

③如果甲车3小时行150千米,乙走2小时行80千米,几小时后两车相遇?

分组讨论,汇报解答思路,并列出综合算式.

引导学生思考:通过解答以上这三个小题,你知道了什么?引导学生回答:我知道了解相遇求时间这类题,都要先找出甲乙的速度各是多少和相遇时间,如不直接告诉我们,根据题意求出来,再按数量关系式解答.

2.根据条件列算式并说明理由甲乙两地之间的公路长540千米.两辆汽车相对而行,甲车每小时行65千米,乙车每小时行70千米,经过4小时两车相遇.

(1)(65+70)4=540 (2)540(65+70)=4

(3) 54065-70=65 (4) 54070-65=70

(5)540-654=70 4 (6)540-704=654

四、全课小结:引导学生总结这节课学习了什么知识?

五、布置作业

六、板书设计

应用题

复习题小黑板

速度时间=路程

例6

路程速度=时间

(速度的和)(相遇时间)(速度的和)(相遇时间)

270(50+40)

=27090

=3(分)

1-6年级数学教案 篇7

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的`气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

1-6年级数学教案 篇8

1、教学目标

1、在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。

2、进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。

3、向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。

2、新设计

1、串联信息,整合单元复习内容。

2、沟通联系,自主搭建知识网络。

3、聚焦对比,分析说理易混知识。

4、数形结合,提炼方法优化思路。

3、学情分析

厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。

4、重点难点

教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。

教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。

1-6年级数学教案 篇9

教学内容:

人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:

理解比的基本性质

教学难点:

正确应用比的基本性质化简比

教学准备:

课件,答题纸,实物投影。

教学过程:

一、复习引入

1.师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2.你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3.你还记得分数的基本性质吗?举例说明。

【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2.学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1.教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3.全班验证。

16:20=(16○□):(20○□)。

4.完善归纳,概括出比的基本性质。

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善板书。

(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

5.质疑辨析,深化认识。

【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

三、比的基本性质的应用

师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

(一)理解最简整数比的含义。

1.引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

2.从下列各比中找出最简整数比,并简述理由。

3:4; 18:12; 19:10; ; 0.75:2。

(二)初步应用。

1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

学生独立尝试,化简后交流。

(1)15:10=(15÷5):(10÷5)=3:2;

(2)180:120=(180÷□):(120÷□)=( ):( )。

预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。

2.化简前项、后项出现分数、小数的比。(课件出示)

师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像:和0.75:2,

这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的`最小公倍数。

4.方法补充,区分化简比和求比值。

还可以用什么方法化简比?(求比值)

化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

5.尝试练习。

把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

32:16; 48:40; 0.15:0.3;

【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

四、巩固练习

(一)基础练习

1.教材第53页第4题。

把下列各比化成后项是100的比。

(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。

(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

(3)某企业去年实际产值与计划产值的比是275万:250万。

2.教材第53页第6题。

(二)拓展练习(PPT课件出示)

学生口答完成。

1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。

2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )

【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

五、课堂小结

这节课你有什么收获?还有什么疑问?

1-6年级数学教案 篇10

教学内容

1、用联系的、发展的思想指导教学,借助多媒体课件突出概念之间的联系与发展。让学生在多媒体的动态演示中,充分感知概念之间的联系与发展中,从而形成知识的建构,知识链就非常清晰。

2、细化操作,把发现、归纳的主动权交给学生。让学生通过看一看、议一议、画一画等手段,让学生充分感受概念的形成,从而形成正确的概念,顺理成章的由他们自己得出定义。

教学目标:

1、学生认识射线,能正确区分直线、线段和射线;使学生进一步认识角,理解角的概念,认识表示角的符号;理解角的大小跟角的两边叉开的大小有关,与边长无关。会直接比较角的大小。

2、正确画射线,会用角的符号记角。

3、通过观察、操作、比较、猜想等数学活动,培养学生的创新精神,发展空间观念;通过小组讨论等学习形式,使学生学会合作,学会评价。 教学重点、难点、关键: 重点:建立射线的概念;理解角的概念;会直接比较角的大小。 难点:使学生理解角的边是两条射线,角的大小跟角两边叉开的大小有关; 关键:通过观察、操作、比较等活动培养学生的空间观念,建立正确表象。

教具准备:多媒体课件 教学过程:

一、导入新课。

师:我们已经学过了直线和线段,你还记得它们的特点吗?

1、电脑动态显示直线,电脑显示在直线上选两点,并呈现

2、生回答。

3、师根据学生回答板书:直线它是直的,没有端点,可以向两边无限延长线段也是直的,有两个端点,不能无限延长,有限长

4、师小结:刚才同学们的表现非常出色,请你们继续努力。

二、认识射线

1、在我把线段的一端无限延长,又得到这样的一条线,它叫什么?(有的同学可能知道是射线,因此没有直接给出。)(板书射线)(电脑动态演示)

2、师:把线段的另一端也无限延长,就又得到一条什么?

生:射线

3、师: 那么,射线是怎么得到的呢?

生:把线段的一端无限延长,就得到一条射线(电脑出示:把线段的一端无限延长,就得到一条射线)

4、 师:射线又有什么特点呢?

生:也是直的生:有一个端点,可以向一个方向无限延长

生:它的长度也是无限长的。

5、根据学生回答板书:射线,直的,一个端点,无限长

6、 画一画

师:先画一个点,在从这个点出发,你能画射线吗?能画几条?

生画后师:说一说是你是怎么画的?

生:先画一个点,再从这个点开始往随便哪个方向画

师:从一点出发能画几条射线?

生::从一点出发可以画无数条射线。

7、课件演示:从一点可以引出无数条射线

8、师:日常生活中,哪些东西可以看作射线呢?

生:太阳射出的光

生:电筒射出的光

生:X光

……

9、师:观察比较直线、线段、射线三者之间有什么联系和区别?(借助多媒体演示,从直线到线段再到射线,由已知到未知,形象鲜明,感受充分,从动态的角度认识射线并归纳三者的联系与区别,学生水到渠成,印象深刻。)

三、认识角。

1、继续看“从一点可以引出无数条射线课件”

2、问:在这里你发现了什么新的图形?

3、小组讨论交流

4、学生到课件前边指边回答。(学生能够指出来角)先画一个点,再从这个点出发画两条射线,看一看你们画出来的是什么图形?(角)

5、师在黑板上画上一个角

观察老师画的角:怎样的图形是角?根据学生回答板书:从一点引出两条射线所组成的图形是角(课件展示角的概念)

6、 师介绍角各部分的名称(课件展示记法)(板书:顶点、边)

生指出黑板上角的顶点与边

问:一个角有几个顶点几条边?

7、介绍角的符号,给角标号 1 、2

8、举例,日常生活中,你能找到角吗?

9、你自己能画吗?

10、判断那些是角,哪些不是角?

(充分尊重学生,让学生在画一画、议一议的基础上,自己归纳出角的定义,并通过从实际生活中寻找角,更深刻的认识角的特征,再根据特征进行辨析判断,操作细腻、到位。)

11、角的大小

(1)、师出示活动角,通过演示让学生感受角的大小。

(2)、 角1、角 2 角3哪个角大,哪个角小?你是怎么知道的'?(用眼睛看)

(3)、屏幕出示两个大小差不多的角,哪个大哪个小呢?

议:在眼睛不能直接看出大小时,有没有更好的比较办法呢?

生说后电脑演示叠得比较的过程

指明生说一说如何比较

生说后电脑演示比较

12、 议一议:角的大小究竟与什么有关,与什么无关?

小结:角的大小与边张开的大小有关,与边的长短无关。(板书)

(围绕角的大小与什么有关与什么无关,设计了直观感知角的大小,用眼睛判断角的大小,用重叠法比较角的大小几个层次,层层深入。并借助多媒体技术清楚地显示比较的过程,让学生较好地掌握重叠法比较的方法)

四、综合实践练习(见课件)

数角时:从联系的观点从点到射线到一个角再到更多的角,让学生深刻地感受到几个概念间的联系,巩固角的概念。

五、课堂总结

1、 这节课你有什么收获?

2、 还有什么疑惑吗?

3、 学生如果有,解疑。本节课采用多媒体组合教学设计,让学生充分感受各个概念间联系与区别,效果颇好,主要有以下特点:

1、 充分发挥多媒体技术的作用,揭示各概念之间的联系。直线、线段、射线三个概念是互相联系与发展的,运用多媒体手段让学生通过动态的演示,生动、直观,学生理解。

2、 巧妙运用对比法进行教学,揭示各概念之间的区别。在揭示直线、线段、射线三个概念的联系时,引导学生进行比教;在教学角的大小时,不光揭示出角的大小与什么有关,而且揭示了角的大小与什么没关,形成对比,使学生对角的大小更加清晰、明了。

3、 为学生自主得出概念的内涵与外延积极创造条件,让学生通过画一画、比一比、议一议等手段,充分感受概念的形成,从而自己概括出概念的规范定义。

1-6年级数学教案 篇11

一、教学目的:

1、通过活动,使学生知道数学知识与生活有着密切的联系,能有意识的综合运用所学的知识解决简单的实际问题,学会与他人合作,培养组织活动的能力。

2、进行有关的思想教育,如教育学生要有礼貌,注意安全,爱护果树等物品。

二、教学过程:

课前准备:课前已把表格发给了每一位学生,学生已对果园产生了兴趣,通过已经分好组的计划,让学生自己去收集有关的信息,例如:学校到果园实践购物及费用方面,有了解大家爱吃什么,卖多少,每种物品的价钱及一共要多少元等等,这些都要学生通过自己小组的讨论而定。

X月X日:全班师生乘车来到柳埠X果园进行参观,路上,大家兴致勃勃,纷纷询问各自所带的物品及自己小组的活动计划。

以下为教学片断的梗概:

师:现在我们已经到了美丽的果园,进了果园之后,要讲礼貌,注意安全,要爱护果树,保护好果园的环境。(在农民与学生的交流中,教师也要记录有关的数据这样自然的融入到班级中去。)(电脑设计果园,教师在其中)

小A:农民伯伯,您好,我们的果园这么大,它到底大鸡长有多少米,宽有多少米呢?

农民:果园可大了,长由174米,宽有126米。

教师:那它到底占地多少公顷?(及时引发学生思考)

(学生沉默片刻)

小B:大约有22100平方米,我是用174第六以126得出的。

教师:大家同意吗?

小C:不对,老师问的是多少公顷,而不是多少平方米,应该是2.21公顷。

教师:这次大家同意吗?

全班:同意。

小D:果园这么大,能栽多少棵树呢?

农民:我们这里有1278棵果树。

小E:这么多,那一棵苹果树能产多少千克苹果呢?

农民:大约一棵树能产50千克。

教师:农民伯伯用汗水换来的丰硕的.果实,一千无苹果按市场价能卖多少元?(教师融入其中,能充分调动学生的积极性)谁能帮农民伯伯计算一下他一年能挣多少钱?

(学生争先恐后的想在农民伯伯这里展示一十自己,有的议论,有的笔算,有的干脆用上了计算器)。

小F:我们知道了,现在市场价每千克苹果1.60元,照这样计算,农民伯伯一年的收入大约是102240元。

1-6年级数学教案 篇12

教学内容:小学数学第七册7475页的内容

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点、难点:理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

  教具准备:课件。

教学过程:

(一)复习旧知,做好铺垫。

1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

2、练习(出示)

口答下面各图形的面积。(单位:厘米)

(二)创设情景,提出问题

师:前不久,我们学校开展植树护绿活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的`形状近似于那种平面图形呢?(课件显示图)

师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

(三)小组学习,解决问题。

师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

合作要求:

(1)想一想:我们已经学过哪几种图形的面积公式?

(2)试一试:把梯形转化成已经学过的图形。(任选一种)

(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

1-6年级数学教案 篇13

学情分析:

学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。

教学目标:

1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

2.培养学生的观察、比较、分析、综合及动手操作能力。

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

教学重点:

推导并总结出圆周长的计算公式。

教学难点:

深入理解圆周率的意义。

教学过程:

备注:

活动一:创设情境,引起猜想:认识圆的周长

(一)激发兴趣

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1.回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体

中找出一个圆形来,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2.怎样才能知道这个正方形的周长?说说你是怎么想的?

3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总

是边长的几倍?

(四)讨论圆周长的测量方法

1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2.反馈:(基本情况)

(1)滚动--把实物圆沿直尺滚动一周;

(2)缠绕--用绸带缠绕实物圆一周并打开;

(3)折叠--把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3.小结各种测量方法:(板书)转化

曲直

4.创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

5.明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

(五)合理猜想,强化主体:

1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。

2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3.正方形的周长总是边长的4倍,再看这幅图,

猜猜看,圆的周长应该是直径的倍?

(正方形的边长和圆的直径相等,直接观察可发现,圆周长

小于直径的四倍,因为圆形套在正方形里;而且由于两点间

线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4.小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

活动二:动手操作,探索圆的周长与直径的关系。

想了解更多【1-6年级数学教案】网的资讯,请访问:1-6年级数学教案